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We study the saturation near threshold of the axisymmetric magnetorotational instability (MRI) of a viscous,
resistive, incompressible fluid in a thin-gap Taylor-Couette configuration. A vertical magnetic field, Keplerian
shear, and no-slip conducting radial boundary conditions are adopted. The weakly nonlinear theory leads to a
real Ginzburg-Landau equation for the disturbance amplitude, as in our previous idealized analysis. For small
magnetic Prandtl number (P, < 1), the saturation amplitude scales as 73121{3 while the magnitude of angular
momentum transport scales as 73‘,;/3. The difference from the previous scalings (proportional to P:rfz and Py,
respectively) is attributed to the emergence of radial boundary layers. Away from those, steady-state nonlinear
saturation is achieved through a modest reduction in the destabilizing shear. These results will be useful in
understanding MRI laboratory experiments and associated numerical simulations.
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I. INTRODUCTION

The magnetorotational instability (MRI) is a linear insta-
bility known to occur in rotating hydromagnetic shear flows
when the angular velocity decreases with increasing distance
from the rotation axis, i.e., &R(Qz) < 0. Although it had been
known for almost half a century [1-3], the MRI acquired
renewed interest only after the influential work of Balbus and
Hawley [4], who have shown, by means of linear stability
analysis and numerical simulations, its viability in conditions
locally approximating astrophysical accretion disks. Subse-
quent investigations of this kind (see the reviews by Balbus
and Hawley [5,6] and references therein) have quite convinc-
ingly demonstrated that this instability can drive magnetohy-
drodynamical turbulence in a variety of conditions, appropri-
ate to accretion disks and more general settings as well.
Within the framework of a magnetic Taylor-Couette configu-
ration, which is relevant for the present work, the parameter
dependencies (magnetic Reynolds and Prandtl numbers) of
the marginal (linear) instability threshold has been previ-
ously considered [7,8]. It was found, among other things,
that the critical magnetic Reynolds number does not scale
with the magnetic Prandtl number, for small values of the
latter. This result carries over into the weakly nonlinear
theory presented here.

Accretion disks are important and ubiquitous astrophysi-
cal objects and are thought to power such diverse systems as
young stellar objects, close binary systems and active galac-
tic nuclei. Accretion disks are flattened, high specific angular
momentum (with essentially a Keplerian distribution) masses
of gas, through which matter accretes onto a central object.
An efficient mechanism for dissipation and transport of an-
gular momentum is needed in order to allow accretion and
reconcile the theoretical models with observations. Since the
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typical hydrodynamical Reynolds numbers (R) in these as-
trophysical flows are enormous, it was recognized at the out-
set, when accretion disks were theoretically proposed [9,10],
that some anomalous, enhanced (conceivably turbulent) dis-
sipation and transport must be invoked. Keplerian rotating
flows are (according to the Rayleigh and other criteria) lin-
early stable, and thus astrophysical disk turbulence cannot
originate from a linear instability of the kind known (and
well studied) in Taylor-Couette hydrodynamical flows.

The physics of the nonlinear development of the MRI, its
saturation, and the nature of the resulting angular momentum
transport are quite complicated. Almost all of our present
knowledge on this subject comes from numerical simula-
tions, carried out by several groups (see, e.g., [4-6,12] and
references therein). These finite-difference simulations, even
though intended for the study of the MRI in its astrophysical
setting, were actually local, i.e., done for a small portion of
an accretion disk, in what is known as the shearing box (SB)
or sheet formulation [4,11] (see the Appendix of [13] for a
formal account of this approximation). Although a lot has
been learned from these simulations, the intricate processes
at work are not yet fully understood, and some basic physical
questions remain open (see, e.g., [14,15]). As a result, there
has recently been a growing interest in observing the insta-
bility in the laboratory, where various physical aspects can be
unraveled in a controlled way. A number of groups have
indeed embarked on such experimental projects, in several
setups, often accompanying them by appropriate numerical
calculations (e.g., [16-21], and references therein).

In comparison to the large extent of numerical and experi-
mental work on the MRI’s nonlinear development, there
have only been very few reports of analytical and semiana-
Iytical studies on this subject. This fact seems surprising,
because a very large body of work, utilizing various
asymptotic approaches, has been done for other important
fluid instabilities (for reviews see, e.g., [22-26]). We are
aware of only two asymptotic studies of this kind in the MRI
context.
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(1) In the first one [27], Knobloch and Julien investigated
the saturation of the MRI in the strongly nonlinear regime
(far from the instability threshold). They utilized the so-
called channel modes (radially independent axisymmetric
linear modes, which also happen to be exact solutions of the
nonlinear problem in the SB formulation [5,28]). They per-
formed an asymptotic calculation, in which the evolution of
channel modes is followed into the nonlinear regime by gen-
tly tuning the system out of the developed short-wavelength
channel mode configuration (and under a specific regime of
system’s parameters). This work shows that nonlinearities
saturate the system in such a way that the momentum trans-
port scales as (RR,,)”!, where R and R,, are the hydrody-
namic and magnetic Reynolds numbers, respectively [see Eq.
(4.22) in [27]]. The results further indicate that, by modify-
ing the underlying shear (the “source” of instability), the
system saturates while approaching solid body rotation.

(2) In the second study [29] by Umurhan, Menou, and
Ragev (UMR), we employed a more traditional approach—
weakly nonlinear asymptotics close to the instability thresh-
old. The problem we considered differed from previous stud-
ies in that we considered the dynamics to be restricted to a
narrow (in its radial extent) channel. Our original intent was
to understand the MRI under a more controlled setting—one
in which the channel modes are filtered out by the imposition
of no normal-flow conditions at the inner and outer bound-
aries of the channel. Under these conditions, arguably more
appropriate to capture the physics of experimental setups, the
MRI unstable mode transits into instability in a way analo-
gous to that of Rayleigh-Bénard convection. An idealization,
involving a hybrid free-slip-no-slip and conducting—
insulating boundary conditions, atop the no-normal-flow
conditions mentioned above, allows for transparent analyti-
cal evaluations of the derived necessary quantities (similar
idealizations have sometimes been used in other studies [20])
of the problem. The similarity of this formulation to other
extensively studied hydrodynamical instability problems led
us to the application of weakly nonlinear asymptotic tech-
niques to examine the system’s transition into the nonlinear
realm, as well as to comparison of the results to specially
designed numerical simulations. We found that, as the sys-
tem is gently tuned into instability (through a suitably de-
fined nondimensional parameter €), a saturated pattern state
emerges with the amplitude of the most unstable mode
evolving according to the real Ginzburg-Landau equation
(GLE)

A =N + DA — a|A]PA =0, (1)

where T and Z are suitably “stretched” time and vertical
coordinates, and the coefficients of the equation are all real
and computable from the parameters of the physical prob-
lem. In particular, the coefficient & was found to scale as
P;ll, where P, is the magnetic Prandtl number, defined by
the ratio R,,/’R. It means that the amplitude achieved by the
system in the saturated state scales as e\r’Fm and, correspond-
ingly, the overall angular momentum transport as €P,,. For
R, fixed this transport would scale as 1/R, and this formu-
lation is useful when the resistivity of the medium is set by
its physical state (i.e., degree of ionization) and one wishes
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to estimate the effect of decreasing effective viscosity (re-
sulting, e.g., from the inaccuracy of the numerical scheme in
a simulation). These analytical scalings were found in the
limit P,, <1, while for larger values of P,, similar trends
may be expected but the coefficients have to be evaluated
numerically. We conjectured that for self-consistent bound-
ary conditions the above general qualitative behavior should
hold as well, with perhaps some change in the relevant
power of P,, in the scalings. Our asymptotic analysis was
accompanied by fully numerical spectral calculations of the
original SB equations with similarly idealized boundary con-
ditions. The analytical and numerical scalings were found to
agree quite well.

In this paper we present a study of the MRI as developing
in a model representing the thin-gap limit of a magnetic
Taylor-Couette (MTC) configuration, in which an incom-
pressible axisymmetric rotating flow is subject to an external
vertical magnetic field. This will permit a quantitative exami-
nation of the effect of the boundary conditions on the results
reported by UMR and confirm the conjecture on the general
qualitative behavior.

The fundamental equations of motion are the same as
those assumed in previous studies of the MRI (e.g., [4]) save
for the inclusion of nonideal effects, namely, resistivity and
viscosity. Solutions to these equations are sought, subject to
realistic boundary conditions at the system walls, namely,
that of no flow, and conducting conditions. For the vertical
boundary conditions we assume periodicity for the sake of
simplicity and transparency. After presenting, in Sec. II, the
relevant approximations, definitions, and equations, we per-
form, in Sec. III, a linear eigenmode analysis. We identify
the most unstable mode as a function of the nondimensional
parameters of the system—of which there are five: the Cowl-
ing number C, the magnetic Prandtl number P,,, the magnetic
Reynolds number R,,, and the shear index g (see below). We
demonstrate next that this system has a transition into insta-
bility which is similar in some important aspects to that in
Rayleigh-Bénard convection [22-24,26]. We also identify
the presence of a neutral, spatially constant mode represent-
ing the effect of a constant azimuthal field.

In Sec. IV, we perform a weakly nonlinear asymptotic
analysis by tuning the system away from the conditions of
marginality. In this case this is done by ratcheting the back-
ground magnetic field downward from the marginal state
with the magnitude of the departure from that state measured
by the small parameter €. The full calculation, detailed in
[37], reveals that the envelope (of the marginally unstable
modes) evolution is governed by two uncoupled partial dif-
ferential equations: one represents the leading MRI mode
and evolves according to the real GLE and the other equa-
tion, representing the evolution of the uniform azimuthal
field, is a standard diffusion equation. The saturated ampli-
tude of the leading MRI mode is demonstrated, in the P,, < 1
limit, to scale as 67)3,{3, and is shown to be affected by the
boundary layers appearing at the system walls. The main
physical factor contributing to saturation is identified as
coming from the second order (in €) correction to the azi-
muthal velocity perturbation in the limit P, < 1. This, in
turn, affects the shear profile so as to stabilize the new steady
configuration. We also find that the average total angular
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momentum transport implied under these conditions scales
as &P for P,<1, or as €R? for R,, fixed [and of
O(1)]. These results are in accord with the conjecture and
expectations given by UMR.

In the last section we discuss the implications of our work
and how it should be perceived as a part of the ongoing
research efforts on various aspects of the MRI. We also pro-
vide some heuristic arguments to help understand the results.
Finally, we end with a short outline of possible directions for
future work of this kind.

II. ASSUMPTIONS, DEFINITIONS, AND EQUATIONS

The hydromagnetic equations in cylindrical coordinates
[3] are applied to the neighborhood of a representative radial
point (ry) in the system, using the above-mentioned shearing
box approximation. The SB approximation is applied here to
the thin-gap limit of a Taylor-Couette setup with an imposed
background vertical magnetic field. We begin by considering
a steady base flow with only a constant vertical magnetic
field, B=BZ, and a velocity of the form V=U(x)y. In this
base state the velocity has a linear shear profile U(x)=
—qQyx, representing an azimuthal flow about a point r, that
rotates with a rate (), defined from the differential rotation
law Q(r) < Q(r/ry)™9. The total pressure in the base state
(divided by the constant density)

1 B}
M=—|\P+—
Po 8

is a constant and thus its gradient is zero.

This base flow is disturbed by three-dimensional (3D)
perturbations on the magnetic field b=(b,,b,,b.), as well as
on the velocity u=(u,,u,,u.) and the total pressure w. We
consider only axisymmetric disturbances, i.e., perturbations
with structure only in the x and z directions. This results,
after nondimensionalization, in the following set of nonlin-
ear equations:

d
?‘; — 204 X u - gQuut§ — Cb - Vb — CByd.b
1 2
=-Vw+ —=V-u, (2)
R
db . 1
I b - Vu+qQyb.§ - Bydu= R—Vzb, (3)

m

together with an incompressibility condition and the solenoi-
dal magnetic field constraint

V-u=du+du,=0, V-b=0db. +db =0. (4)

The Cartesian coordinates x,y,z represent here the radial
(shearwise), azimuthal (streamwise), and vertical directions,
respectively, and since axisymmetry is assumed V=Xd,
+24. and the Laplacian is V>=g?+¢’. Lengths have been
nondimensionalized by L (the shearing-box size); time ¢ by

the local rotation rate ﬁo (tildes denote here dimensional
quantities). Because the dimensional rotation rate of the box
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(about the central object) is €,=0,Z, the nondimensional
quantity ) is formally equivalent to 1, but we keep it to flag
the Coriolis terms. Velocities have been scaled by ﬁOLand
the magnetic field by the value of the background vertical
field EO. Thus the nondimensional constant background field
By=1, but again we leave it in the equation set for later
convenience (see below). The hydrodynamic pressure is
scaled by ﬁOLzﬁg and the magnetic one by ES/ (87). The
nondimensional perturbation @ of the total pressure divided
by the density (which is equal to 1 in nondimensional units),
which survives the spatial derivatives, is thus given by

g (5)

1
=p+C=|b
w=p+C]

where p is the hydrodynamic pressure perturbation.
The nondimensional parameter

By, Vi

C=———"="
4mpe QL V2

(6)

is the Cowling number, measuring the relative importance of
the magnetic pressure compared to the hydrodynamical one.
It is equal to the inverse square of the typical Alfvén number

(V, is the typical Alfvén speed). The Cowling number ap-
pears in the nonlinear equations, together with the two Rey-
nolds numbers

QL2 Q,L>
—~ £ Rm = ~
v 7

R = > (7)

where ¥ and 7 are, respectively, the microscopic viscosity
and magnetic resistivity of the fluid. We shall also see that
the magnetic Prandtl number, given as P,=R, /R, plays
an important role in the nonlinear evolution of this system.

We rewrite now the equations of motion in terms of more
convenient dependent variables:

GV + Ny =RV +2Q00.u, + CBya.V*P,  (8)
Ay + N, =R™'V2u, - Qy(2 - )9, ¥ + CByd.b,,  (9)
0,® + Ny = R;,'V?® + Byo. ¥ (10)

by + Ny =R, Vb, + Bodu, — gQyd.P. (11)

Because the flow is incompressible and y independent, the
radial and vertical velocities are expressed in terms of the
stream function W, that is, (u,,u,)=(3,¥,-3d,¥). Also, since
the magnetic field is source-free, we similarly express its
vertical and radial components in terms of the flux function
®, that is, (b,,b,)=(3.P,-9,P). Note that (10) combines in-
formation about the radial and vertical magnetic fields in
terms of the flux and stream functions (e.g., [20]). In this
formulation the nonlinear advection and tension terms are
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Ny = J(¥, VW) - CJ(D, VD),
- CJ((I)ab )9NCI) = J(\I,’(D),

N, =J(V,u,)
N, =J(¥.b,) - J(D,u,),
(12)

in which the Jacobian is defined as J(f,g)=d.f d,g—d.fd.g.
The underlined term in (11), representing the transport of the
perturbed radial magnetic field by the background shear flow,
is instrumental for the occurrence of the MRI in this system.

The boundary conditions are periodic on the vertical
boundaries of the domain, and we require also that the flow
be no slip at the inner and outer boundaries. This means that
u=0 at x=+1, i.e.,

u,=0, 9, ¥=0,

) V=0 atx==1. (13)

Regarding the boundary conditions on the magnetic field dis-
turbances, we posit conditions (only two are needed) that are
consistent with the inner and outer walls being conducting,
b,=0 and 9,b,=0 at x==1, i.e,

a0=0, aby=0 atx==1. (14)

Note that these boundary conditions are more physically
consistent than the ones used by UMR; however, they will
call for a numerical evaluation of the eigenfunctions and the
coefficients for the asymptotic analysis that result from them.

Finally, we point out that there exists an energy theorem
for the above dynamical equations. Defining the total energy
(per unit length in the azimuthal direction) of the distur-
bances in the domain as E= % [ (u?+Cb?)dx dz, we get, after
the usual integration procedures and application of boundary
conditions,

dE 1
E:qQOJdedz—Ef(|Vux|2+|Vuy|2+|Vuz|2)dxdz
¢ 2 2 2
- | (VL4 IVb P4V Pax dz. (15)
where
TzTR+TM, TREMXM},, TME_Cbbe.

Tg and T, are the Reynolds (hydrodynamic) and Maxwell
stresses, capturing the velocity and magnetic field distur-
bance correlations, respectively. Statement (15) is analogous
to the Reynolds-Orr relation in hydrodynamics (for which
T=Tg and T=0). The total stress T will be used in the
asymptotic theory we develop here as the dominant expres-
sion for the evaluation of transport, occurring during the
weakly nonlinear evolution of the system. The full right-
hand side of (15), including the two dissipative terms, should
obviously vanish when a saturated, steady state is reached.
We discuss this in more detail in Sec. V.

III. LINEAR THEORY
Linearization of (8)—(11) yields the following equation:
&[DVI =£V1, (16)

in which all the small perturbations are lumped in the vector
V=V, (x),u,(x), D, (x),b,(x))Te**"+c.c., with k being the
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FIG. 1. (Color online) Summary of linear theory. This example
is for C=0.08, P,=0.001, g=3/2, and the fundamental mode. (a)
Growth rates, Re(s), as a function of wave number k for three
values of R,,. (b) Solid line depicts those values of R,, and k where
Re(s)=0. The shaded region shows unstable modes. The locations
of k=k..;;=Q and R,,=R,,(crit) =R,, are shown.

vertical wave number and s the temporal eigenvalue. The
spatial differential operators D and £ (appropriately written
in the form of 4 X4 matrices) are explicitly given in Egs.
(B1)-(B3) of Appendix B in [37]. As long as k#0 the
boundary conditions on the functions of V| become [see Egs.
(13) and (14)]

W1=qu’1=ul=q)l=Dxbl=0 atx=il, (17)

where D =d/dx.

In principle, Egs. (16) can be set up and solved analyti-
cally, however, the resulting expressions are far too cumber-
some to be conveniently manipulated. It is much easier to
solve this set numerically, using a Chebyshev collocation
technique. Each function is approximated using typically be-
tween 30 and 60 grid points on a Chebyshev numerical grid.
Larger number of points are required for smaller values of
the magnetic Prandtl number.

We shall concentrate on and follow here only one mode
and call it the fundamental one. This is the mode that first
becomes unstable when the vertical magnetic field is de-
creased below threshold (the mode is marginal at threshold).
For given values of the parameters, the eigenvalue corre-
sponding to this fundamental mode arises as one of the four
possible solutions of the dispersion relation. It is purely real
[Im(s)=0] and thus the instability is steady, or nonoscillatory
(in the customary nomenclature, e.g., [23]). The solution of
the dispersion relation provides the functional dependence
s=s(k,q,C,P,,R,).

In Fig. 1(a) we display the growth rate Re(s) as a function
of k of this fundamental mode, for several values of R,,. The
parameters C,P,,, and ¢ are fixed at the values indicated in
the caption. We see that the transition into instability is typi-
cal of steady cellular instabilities (similar, in principle, to
Rayleigh-Bénard convection). The marginal mode can be
chosen to have a transition to instability at the maximum of
the curve s(k) (i.e., s=0 simultaneously with ds/dk=0),
while all the other modes show strong temporal decay. The
marginal mode can be identified with respect to a critical
wave number k_;; = Q and a critical magnetic Reynolds num-
ber R,,(crit) =R,
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FIG. 2. (Color online) Eigenfunctions for the marginal mode at
C=0.08, P,=0.001, g=3/2. Here Q~0.75, R,,~4.9. The eigen-
functions are shown fitted (solid line) to the values determined nu-
merically on the Chebyshev grid (open circles). (a) V4, (b) u;y, (c)
®,;, and (d) b;;. Note that Re(V;)=Im(u;;)=Im(P,;,)=Re(b;;)
=0. Because the Prandtl number is small, note that rather sharp
boundary layers appearing in W, and u,;. The inset in (a) resolves
the boundary layer behavior near x=-1.

Figure 1(b), which shows the neutral curve (s=0) in the
R,.-k plane, also demonstrates the way in which the critical
values Q and R,, are determined. These critical parameters
are in general functions of the remaining parameters of the
system, i.e., 0=0(q,P,,,C) and R,,=R,(q,P,.C). From
here on out we will restrict our considerations to values of
q=3/2 (for consistency with UMR) and consider the behav-
ior of these quantities as a function of C and, primarily, P,,,.

The eigenfunctions for the mode in question have even
symmetry with respect to x=0 due to both the symmetry in
the boundary conditions and the symmetries inherent to the
thin-gap limit of the MTC problem. In Fig. 2 we display a
sample of eigenfunctions of the marginal mode. To avoid
later notational ambiguity, the eigenfunctions for these mar-
ginal modes (i.e., those with k=Q and R,,=R,,) will be la-
beled with a “11” subscript, that is, those modes will be
represented by

V=W, D) Dy,
when k=k =0, R, =7R,(crit)=R,,.

Uy <= uyp, by < by,

It is argued in Appendix A that in the limit P, <1, the
boundary layer sizes that appear scale as 73:,{3. The boundary
layers that develop are satisfactorily represented numerically
by the Chebyshev method used, e.g., with a grid of 50 points
we can resolve at least 3—4 points of the boundary layer
zones when P,,=107>. This dependence on P,, will also have
some bearing on the scaling properties of the coefficients of
the resulting (real GLE) envelope equation, presented in the
next section.

Finally, we note that there always exists an additional
marginal mode of the system, separate from the above-
mentioned MRI mode. This neutral mode reflects a symme-
try introduced into the system due to the conducting bound-
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ary conditions; namely, a spatially constant, time-
independent solution for the azimuthal magnetic field (i.e.,
by:const) both solves the linear (and, incidentally, the non-
linear) equations and satisfies its requisite boundary condi-
tions. This mode must be formally included in the subse-
quent nonlinear analysis.

IV. WEAKLY NONLINEAR ASYMPTOTIC ANALYSIS

The weakly nonlinear analysis aims to develop a descrip-
tion of the system’s evolution beginning very close to mar-
ginality, slightly into the unstable region. The control param-
eter in the asymptotic analysis is incorporated in the
expression for the background magnetic field. It is here set to
be By=1-¢€, i.e., the degree of departure from marginality is
controlled by the small parameter € (of our choosing) whose
only formal restriction is that it be e< 1.

Close to marginality the relevant MRI mode, discussed in
the previous section, may be expressed to leading order in €
(as can be shown by a simple scaling and balancing analysis)
in the form

€Vl = E(A‘Vl]eiQZ +BU]1 + C.C),

where V=¥, u,;,®,;,b;,)" and U;;=(0,0,0,1)". The
inclusion of BU; in this general solution is dictated by the
presence of the neutral mode, discussed at the end of the
previous section.

The weakly nonlinear evolution is asymptotically derived
by allowing the amplitudes A and B to be (weakly) depen-
dent on space and time. The aim is to develop an evolution
equation for the envelopes A and B (space- and time-
dependent amplitudes) as one tunes the system away from
the marginal state defined above at k=Q and R,,=R,,. The
wisdom garnered from other problems involving cellular in-
stabilities [22-25] guides us into an ansatz such that the two
envelope functions have functional dependencies upon a
long time scale, T= €, and a long vertical scale, Z= ez, i.e.,
we posit the form A=A(€’t, z), B=B(€’t, €z). The end result
of this asymptotic procedure, fully detailed in Appendixes B
C [37], are the two (decoupled) amplitude equations

OrA = \A — aA|A|> + DFA, (18)
1 CR
o"TB:(R—+T>&%B, (19)

m

where T= €, Z= ez, and the coefficients are defined in Ap-
pendix B in [37].

We stress here that the decoupling of these two equations
is the result of translational (x) symmetry of the thin-gap
problem, but it cannot be guaranteed for a case in which,
e.g., curvature terms have to be retained. Equation (19) is the
diffusion equation and its physical implications are quite
trivial. It indicates that the contribution of the above-
mentioned neutral mode to the azimuthal field perturbation
will simply decay on a time scale associated with the sys-
tem’s size and the smaller of either R, or 1/CR—the mean-
ing of the latter possibility will be explored in forthcoming
work. In contrast, Eq. (18) is the well-studied real Ginzburg-
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FIG. 3. (Color online) Coefficients, parameters, and saturation
amplitude squared, as a function of P, for g=3/2, C=0.08. (a)
Plots of R,,, O, D, \ as functions of P,,. Note the weak sensitivity
on P,,. (b) Values of « (diamonds) as a function of P,,. Plotted as
well is the functional dependence a~ 77;,4/3 (solid line) discussed in
the text.

Landau equation (see, e.g., [23-25]) which can exhibit non-
trivial behavior in both the amplitude and phase of the enve-
lope function A. The phase can lead to interesting dynamics
emerging from Eckhaus-like instabilities; however, in the
present study we care only about the behavior of the ampli-
tude’s magnitude, i.e., the modulus of A. We shall thus agree
henceforth to mean |A , when writing A. Further discussion
of phase dynamics can be found in the concluding section of
this paper.

A real amplitude A in the real GLE has two stable spa-
tially uniform steady solutions A(Z,T)=+A,, and one possi-
bly unstable solution A=0, as can be easily verified. Depend-
ing on the boundary conditions, the system typically relaxes
to one of the steady solutions or, possibly, splits into two
regions (the plus and minus values of A;) with a front sepa-
rating them (see, e.g., [26] for an example of a system of this
kind).

From (18) it is apparent that the saturation amplitude is
A,=JN/a and thus its determination calls for the computa-
tion of the relevant coefficients. As discussed before this has
to be done numerically. The details of this calculation are
given in Appendix B in [37] and some representative results
(for the parameter values g=3/2 and C=0.08) are displayed
in Fig. 3. Figure 3(a) demonstrates the weak dependence of
R, and Q, and of the coefficients N and D, on P,, (for
P, 1). In contrast, the coefficient @, whose numerical val-
ues are shown in Fig. 3(b), has a power-law dependence on
‘P,, in the same interval. Thus, the dependence of the satura-
tion amplitude on P,, is essentially governed by «. The ap-
propriate scaling for P,, < lis Af:)\/ a~1/a (given the
very weak dependence of A on P,,).

The analysis sketched out in Appendix D of Ref. [37]
shows that the dominant terms in the expression for « are
such that a~73,_n4/ 3, for P,,< 1. This scaling fits very well
the numerical results in Fig. 3(b) (solid line). We thus obtain
the following scaling behavior for the square of the satura-
tion amplitude:
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FIG. 4. (Color online) Contours of the perturbation stream func-
tion (V) and azimuthal velocity (x,) in the x-z plane, up to and
including order €. The vertical scale of the plots corresponds to one
critical wavelength 277/ Q. The parameters are P,,=0.001, C=0.08,
R,,=4.9 with ¢g=3/2. We take €=0.5 and the amplitude A=0.07
(which is its saturation value for this case). Cuts along constant
values of z are shown in the left panel (and dashed lines in the
contour plots on the right). Note that u, is the velocity disturbance
about the steady profile —gx. '

Af ~ 731’3 (or Af ~ R for fixed R,,)
both for P, < 1. (20)

The physical effects that these dominant terms are reflect-
ing can be traced in the asymptotic analysis as resulting from
the nonlinear radial advection of the second-order azimuthal
velocities u,duy, and the creation of the azimuthal field due
to the shearing of the radial perturbation field b,;d,u,,. Note
that in UMR we were able to obtain (from not fully consis-
tent boundary conditions for this problem) the analytical re-
sult A2~7P,, (or ~R~! for fixed R,,). Thus we see that the
implementation of more realistic boundary conditions that
are appropriate for the thin-gap MTC problem does not alter
the general qualitative trend—saturation amplitude increas-
ing with P,, (or decreasing with R for fixed R,,)—uncovered
in UMR, nor its implications. It merely alters (slightly) the
power of this basic dependence.

In Fig. 4 we plot the azimuthal velocity u,(x,z) and the
stream function W(x,z) of the perturbation, calculated by our
asymptotics to order €. This has to be understood as the
modification on top of the basic MTC configuration, which
together constitute the steady saturated state. The presence of
boundary layers near the channel walls is clearly apparent. In
Appendix A we estimate that the boundary layer sizes scale
as ~P* and this is quantitatively consistent with the in-
crease in power of the scaling from Af~73m (as found in
UMR, where the boundary layers were essentially neglected)
to Af~774/ 3 here. The crucial ingredient in determining the

m
scaling of A, is, as we have seen, the scaling behavior of the
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coefficient @, which in turn is affected by the boundary layer
width through its dependence on the relevant x eigenfunc-
tions (see Appendixes A and Appendix D in [37]).

In Fig. 5 we display the perturbation’s azimuthal field b,
and its poloidal flux function ®(x,z) in a manner similar to
the previous figure. Note that we do not see prominent
boundary layers in the magnetic field perturbation; this is the
result of the boundary conditions imposed (17). Whereas
three velocity boundary conditions are imposed on each side
(ensuring zero perturbation velocity on the boundary), only
two such conditions on the magnetic field perturbation are
enforced (b,=0,d,b,=0). This is so because precisely ten
conditions in all are required, otherwise the problem would
be ill posed.

Finally, we turn to the evaluation of the angular momen-
tum transport (a key question in assessing the MRI’s role as
the driver of accretion in astrophysical systems). The total
(local) stress resulting from the perturbation is composed of
the Reynolds and Maxwell stresses and, in our notation, has
the form (see, e.g., [6,29,30])

T(x,2) = T + Ty = uu, — Chb,b,. (21)

As in UMR, we may define a quantity measuring the av-
erage total angular momentum transport in the domain,

. Q w/Q 1
J=— dz(f T(x,z)dx).
4 e -1

The quantity J can be thought of as analogous to similarly
defined quantities used as a measure of the effective viscos-
ity parameter due to dynamical fluctuations in active fluid
media (for a recent purely hydrodynamic example, see [14]),
be it either in a fully turbulent state or otherwise. In our
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problem, this quantity in the saturated state can be written to
leading order as

J= €A%, + 0(€), (22)

where jO:]O(Rm,Q;C,q) is of order unity. Given the behav-
ior of the saturated amplitude in the P,, <1 limit, it follows
that the average angular momentum transport scales like

Jj~ EPP for~ER™ for fixed R,, of O(1)],
(23)

to leading order. Finally, we show in Fig. 5 the distributed
stress T'(x,y) over the domain and the vertically integrated
stress, defined by E(x)= [T dz.

V. DISCUSSION AND SUMMARY

In this paper we have presented a full exposition of a
weakly nonlinear asymptotic analysis of the MRI for a vis-
cous and resistive flow in the thin-gap magnetic Taylor-
Couette configuration. Our previous work (UMR [29]) em-
ployed mathematically expedient, but not fully consistent
boundary conditions for this problem, so as to allow for
transparent analytical evaluation of the envelope equation
coefficients. Here we have used consistent and realistic
boundary conditions for the MTC setup. As a result, the cal-
culation is more involved. We have nevertheless found (as
anticipated in UMR [29]) that in the thin-gap limit the am-
plitude of the disturbances saturates at a value that decreases
with decreasing magnetic Prandtl number, P,,. Moreover, the
emergence of boundary layers actually makes the P,, depen-
dence of the saturation amplitude, and thus the average an-
gular momentum transport, more severe.

Our results should be put in the proper context. They are
valid close to instability threshold and in a confined system
(MTC). Most previous studies of the MRI in the nonlinear
regime (both numerical and analytical) followed the evolu-
tion of channel modes—exponentially growing, radially in-
dependent modes (see [5]), which happen also to be exact
solutions of the nonlinear equations for the perturbation, in
the SB formulation under periodic boundary conditions, i.e.,
in an open system. It is thus only natural that the channel
modes have been identified as the dominant dynamics and
their evolution perceived as a crucial ingredient in the non-
linear saturation of the instability. Goodman and Xu [28]
showed that the channel modes ultimately become unstable
and break up. The asymptotic study of nonlinear saturation
performed by Knobloch and Julien [27] was also based on a
state dominated by channel modes. In these works, as well as
the recent local modeling of MRI angular momentum trans-
port [30,31], results were compared with numerical simula-
tions of an open SB (undoubtedly dominated by dynamics
arising from the nonlinear evolution of channel modes).
Note, however, that in the global approach of Kersalé ef al.
[32,33], the explicit inclusion of boundary conditions and
curvature terms broke the radial symmetry of the problem
(which is necessary for the channel modes to be manifested).
These authors found numerically (using a spectral code) that
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the form of the saturated state critically depends on the
boundary conditions adopted and, in any case, is not a
“trivial” Keplerian state with developed MHD turbulence on
top of it.

From the vantage point of the linear theory followed here
(as well as the SB investigations of the past), the MRI takes
place primarily because the term supplying the tension, i.e., a
perturbed azimuthal B field, arises from the sheared conver-
sion (by the background flow) of a perturbed radial magnetic
field, emanating from the bending of the background vertical
field. The strength of the resulting destabilizing torque is
related to the magnitude of g (measuring the local stretching)
and the magnitude (squared) of the global vertical B field
(representing that basic source of tension which is being
stretched by the shear). Nonlinear saturation of a linear in-
stability can generically be achieved by increased dissipa-
tion, by the modification of the linearly unstable base state so
as to push it back to stability, or a combination of both.

In the problem studied here, we have considered the mar-
ginal MRI mode (i.e., with growth rate 0), as a function of all
free parameters, save g, which has been fixed to 3/2. We find
that the saturated azimuthal velocity disturbance provides an
effective positive radial gradient, g’ >0, through the bulk of
the flow (see Fig. 4). Thus the effective overall g in the
saturated state is g.;=¢g—¢q' <3/2. The magnitude of the ef-
fective gradient reflects the manner in which the modified
gradient couples to the background field that is being
stretched and is responsible for the instability. In our case, ¢’
is positive and thus reduces the initial destabilizing shear, but
not sufficiently to cancel it entirely. It has to be noted, how-
ever, that the saturated state is not just the base flow with
reduced shear. It includes also extra poloidal and azimuthal
fields, as well as poloidal velocity. This steady state is thus
more complicated; the presence of velocity boundary layers
complicates it even further. It is thus not trivial to identify a
simple process for the saturation “mechanism” in this case.
We note that our results share similarities with the saturation
mechanism proposed by Knobloch and Julien [27] for the
saturated MRI state developed, in a particular asymptotic
regime, from the unstable channel modes discussed above.

We have followed into the weakly nonlinear regime a
dissipative system, which was in a marginal balance and ob-
tained a steady saturated state from a reduction of the shear,
in places over the domain where it counts the most (in terms
of azimuthal field production), and from the emergence of a
steady flow and magnetic field configuration. In terms of
dissipation, it is instructive to consider the energy relation-
ship (15). In our steady saturated state the first integral is just
o [E(x)dx and therefore is positive (see the bottom of Fig.
6). As J,E in this (steady) saturated state must be zero, the
sum of the two dissipative integrals must be equal to the first
one. We have verified that it is indeed so.

We have not considered in this paper phase dynamics,
which is an inherent feature of the more general envelope in
the complex GLE. Phase dynamics may be rich, in particular
in two and three dimensions, admitting well-known pattern
instabilities like Eckhaus and zigzag, and these, in turn, can
lead to effects like phase turbulence and complicated defect
dynamics [24,25]. In what is considered here, where the co-
efficients of the one-dimensional GLE are real, all that re-
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FIG. 6. (Color online) Same as Fig. 4 for the total stress T(x,z)
(top panel) and the vertically integrated stress ==JT(x,z)dz (bot-
tom panel).

mains of the above is just a possibility of an Eckhaus insta-
bility. This may merely introduce some nonsteady
readjustment to the overall pattern phase, but it leaves unal-
tered the overall amplitude scale of the basic pattern that
emerges. In particular, our system is open in the z dimension
and thus there should be no difficulty in the phase adjusting
itself to a stable value (see [24], p. 200). Because we are
interested here in the scaling of the transport (which is ex-
pressed by an integral of the envelope over the domain),
phase dynamics (although interesting in its own right) does
not influence this measure, and we have thus considered only
the modulus of the envelope.

Our results and findings here should ultimately be com-
pared to experiments and numerical simulations accompany-
ing them. Extension of this type of analysis to a wide-gap
MTC configuration is possible, but the results will be some-
what more complicated than those presented here, due to the
inclusion of curvature terms. Preliminary calculations indi-
cate that the evolution of the perturbation amplitude in this
case is governed by two coupled envelope equations (see
Appendix B in [37]). The properties of the saturated state,
however, appear similar in their salient features to the ones
explored in this paper. The case of an initial helical field, for
which experimental detection of the MRI has recently been
reported [21], can also be investigated in the weakly nonlin-
ear asymptotic formalism employed here. It will the subject
of future work.

Further analytical investigations of the nonlinear MRI, of
the kind reported here, will contribute toward assembling a
deeper understanding of this important instability. Such in-
vestigations may also help in addressing the issues of the
effect of numerical resolution upon the resulting dynamics.
In particular, it could be useful to conduct simulations for,

036310-8



NONLINEAR SATURATION OF THE MAGNETOROTATIONAL...

say, a fixed value of the magnetic Reynolds number (well
below any contamination by numerical dissipation) and ex-
amine if and how the transport changes with resolution. Nu-
merical studies of the MHD turbulent dynamo problem (e.g.,
[34,35]) have shown that such considerations are very impor-
tant. The understanding of the role that the MRI plays in
astrophysical disks, which in its full generality is a formi-
dable problem, may be enriched by the experimental, ana-
lytical, and numerical studies of simpler systems.
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APPENDIX A: THE LINEAR SCALE
OF THE BOUNDARY LAYER

The best way to identify the scalings that are appropriate
for the boundary layer is to rewrite (16) as a single equation
for, say, the stream function W. Setting the time derivative to
zero results in
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LY ={[P,(D; - 0*)*+CR; 0"1(D; - Q)
+R,29C0" - 0,Q* (D} - Q°)’R,}W =0, (Al)

where w?=2(2-¢) and where the simplifying notation D,
=d/dx is also used. The operator is tenth order in D, deriva-
tives. Inspection of its form suggests that retaining only the
terms of (Al) that are dominant (for P,<1) in a small
region of size P with A>0 (the total x domain size is 2 in
our units) at either of the two boundaries gives

(Po.D,’ - 0.0’ DIR,)¥ =0. (A2)

Treating all quantities as being of O1 except for P,,, we can
now see that the value of the exponent N must be 1/3. More
explicitly, we consider a boundary layer by rescaling the x
coordinate around the boundaries at x==1. We define &
= P:n”(x 1) and insert this into (A1), revealing

(P "D = P QR DYW + O(P ..., 1) =0,
(A3)

where D;=d/d§. As P,,— 0, a distinguished balancing limit
(see, e.g., [36]) may be achieved when 2—10N=—4\, or
when A=1/3. In this case, all other terms in the boundary
layer region are subdominant to the two terms remaining.
Thus, in the limit P, <1, the size of the boundary layer
scales as PL°.
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